
Local Feature Enhancement Network for Set-based Face Recognition

Ziyi Bai1,2, Ruiping Wang1,2,3, Shiguang Shan1,2, Xilin Chen1,2

1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing, 100190, China
2 University of Chinese Academy of Sciences, Beijing, 100049, China
3 Beijing Academy of Artificial Intelligence, Beijing, 100084, China

ziyi.bai@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn

Abstract— Set-based Face Recognition is widely applied in
scenarios like law enforcement and online media data man-
agement. Compared with face recognition using a single image,
the faces in the set often contain abundant appearance changes.
Therefore, how to make full use of the rich information from
the set and integrate them into a unified set representation
become the key to set-based face recognition. Inspired by
the fact that humans usually complete this fine-grained task
through integrating the information from the congruent local
regions (e.g. an eye to an eye) of multiple faces in a set, we
propose a novel method called Local Feature Enhancement
Network (LFENet), which can automatically enhance the local
feature through transferring the local information across the
images. Specifically, we retain the spatial semantic information
of the feature maps and apply different relational functions
to establish the correlation among the local features. The
contained local information will be transferred to the relevant
local features to enhance their discriminability. By doing so,
the valuable local information carried in some local features
can complement those with incomplete information. Besides, the
various local information is aligned across faces under different
conditions to help the model learn intra-set-compact face repre-
sentations. Our method achieves state-of-the-art performances
on two mainstream set-based face recognition benchmarks:
IJB-A and IJB-C, which fully reflects the rationality and
effectiveness of our local feature enhancement mechanism.

I. INTRODUCTION

Face recognition based on single image [28], [31], [25],

[30], [37], [15], [34], [33], [4], [29] has been well studied

in these years. However, in some real world scenarios, a

set of images gathered from various sources need to be

compared at the same time. Although the diversity of data

brings the richness of face information, it is exhausted

to measure the similarities of every pair of images [45].

Therefore, integrating the discriminative information of each

image within the set to get a unified set-level representation

is necessary for the set-based face recognition.

Nevertheless, the image sets usually suffer from large

intra-set variance for images collected from different sources

have their own characteristics. Still images from the website

include a variety of subject attributes changes, such as pose,
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(b) set modeling through local feature enhancement

Fig. 1: Comparison of two different set modeling methods. The
left part of each subfigure shows the process of set modeling to
get the unified set representation Fs while the right side shows the
corresponding discriminant feature space. (a) represents set mod-
eling by quality score weighted sum; (b) represents set modeling
by learning intra-set-compact image features from f to f ′ through
transferring semantic consistent local information (indicated with
the yellow lines). Best viewed in color.

expression, make-up, etc, while video data are often of lower

quality due to the influence of illumination, compression

and occlusion. Thus the set-based data with the mixture of

still faces and video faces is more challenging for the face

recognition model.

Obviously, simply applying average pooling on image

features obtained by the single image face recognition model

will introduce noise to set representation [16], [43], [3].

To alleviate the effects of the large variations within the

image set, existing set-based face recognition methods [40],

[18], [17], [43] usually focus on exploiting those samples

of high quality while suppress those of low quality for

set modeling to reduce the impact of noise on the unified

set representation. Specifically, the face representations are

aggregated with the weight of the global image quality

score indicating the sample discriminability which is shown

in Fig.1(a). However, we cannot expect that the image

set always contains samples with high quality (i.e. strong978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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discriminability). Although the images of low quality are

often far away from the set center in the feature space, they

can serve as hard samples to guide model learning more

robust feature representation [25], [36]. Thus, how to fully

utilize those low-quality images instead of just suppressing

them is more appealing to the set-based face recognition in

real scenes.

Intuitively, compared with focusing on certain samples in

the image set, humans will continuously observe the congru-

ent local regions of all faces and integrate the information

in these regions to give an overall impression of the person.

Motivated by this fact, we propose a novel method called

Local Feature Enhancement Network (LFENet) to deeply

exploit the interaction of the abundant information contained

in local regions through local information transferring. As

shown in Fig.1(b), we maintain the spatial structure of

the feature maps to extract local features of faces instead

of directly performing average pooling on them. We use

relational learning to establish the correlation between local

features. The face information distilled from each local

feature will be transferred to its related local features to

replenish and enrich their information. By transferring the

local information we enhance the local features from two

aspects: Firstly, the feature with local information missing

(occlusion) or of low quality (blur) is improved. Secondly,

various local information (different poses/expressions) in

multiple images is aligned. Accordingly, the discriminability

of all face representations (especially those of low quality) in

the image set is improved, and these representations become

compact to each other at the same time.

To conclude, our proposed LFENet can make full use of

the rich information contained in the image set: 1) Fine-

grained. We consider a more refined way of information in-

tegration, which keeps the spatial semantics of feature maps

and aggregates the related local information from multiple

faces. 2) Complementary. Through information transfer, the

valuable information across the set can complement each

other, and the various information is aligned across faces

under different conditions. 3) Integral. Each sample in the

set including the images with low quality plays the same role

in set modeling, which enables the model to learn robust

face representations based on comprehensive information.

Extensive experiments on the benchmarks for image set-

based face recognition have shown the effectiveness of our

proposed method.

II. RELATED WORK

A. Deep Face Recognition

The ongoing research aiming at single image face recog-

nition have made great achievements [4], [15], [25], [30],

[34], [29] with the deep neural network. These works focus

on how to extract robust face features to tackle the large

intra-class variation through the deep metric learning. When

directly applying these methods to set-based face recognition,

i.e., extracting features from all images and then aggregating

them with the average/max pooling, the performance is often

limited [31], [14], [3]. Treating all the images uniformly

will introduce much noise into the overall set representation

[40], [6], [16]. To tackle this problem, some set-based

face recognition methods [8], [40], [18], [24], [17], [19],

[38], [45], [6] are devoted to designing more elaborate set

modeling modules.

B. Set Modeling

Intuitively, humans often give an overall impression of a

person by observing from different perspectives. Similarly,

researchers propose to get a unified subject representation

(set modeling) through the information aggregation process

carried on image level and component level respectively.

Image-level aggregation. This type of works [8], [40],

[18], [24], [17], [43] regard each image as a point in

the feature space and conduct set modeling at the image

level. [40], [18], [17], [43] consider that the images with

stronger discriminability (higher quality) contain more key

information. Therefore the high-quality samples are domi-

nant in learning the set representation while the low-quality

images are suppressed. [40], [18] learn quality scores for

each element in the set and perform quality weighted sum

on image representations. [17] uses reinforcement learning

to determine the importance of the image. In [43], images

that are close to the class center and far from others are

considered as representative samples. Faces in the same bins

which are divided based on the pose and quality are pooled

before the feature extraction in [8]. [24] utilizes adversarial

learning to generate synthesized images as the prototype of

the set for faster matching.

Component-wise aggregation. To solve a fine-grained

problem like face recognition, performing information aggre-

gation among face components (local regions) is necessary.

[19] encodes second-order statistics information of local

features to further improve the performance of the model, but

the exploited covariance matrix loses the original spatial se-

mantic information. [38] assumes that comparing the features

of the same local region (landmarks) is important for face

verification, which can be obtained by landmark attention

map from detection. [45] extends the local aggregation

feature VLAD [1] to face recognition task. [6] refines the

quality weighted sum from image-level to component-wise

to further reduce noise information.

C. Relational Learning

Although some methods perform set modeling at the

component level, few works pay attention to the correlation

of them across the set. Relational learning is proposed to

model the relevance between entities. [35], [46] model the

long-distance dependency across the video content through

Relational Learning. In Natural Language Processing, the

self-attention mechanism is proposed to learn contextual

information and capture the internal structure of the sentence

[32], [5], [23], [13]. Inspired by these works, we design a

local information transfer module by performing relational

learning on local features of multiple images to establish their

correlations. Then the related information can be transferred

across the set to complement each other.
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Fig. 2: The framework of our proposed Local Feature Enhancement Network (LFENet) for set-based face recognition.

LFENet contains three stages: (a) At the feature extraction stage, b image sets with Ttr images in each (for training) or

an image set with size Tte (for testing) are input to the CNN to get their corresponding feature representations; (b) Local

information transfer module takes the split-up feature blocks (F ∈ R
T×d×h×w for each set/segment) as input and performs

the information transfer (indicated with green lines) among the related local features with similar semantic information

(highlighted in the feature maps) across the set; (c) The refined feature blocks will pass the feature compression layer to

obtain the embedding of each image during the training phase and the unified set representation for testing.

III. PROPOSED METHOD

In this section, we will first give a brief overview of our

proposed LFENet and then introduce each part of it in detail.

A. Overview

The set-based face recognition model takes a set of images

X = {xi}
T
i=1

of the same identity y as input, where T is the

size of the set. And it is required to learn a unified fixed-

size set representation Fs of the set with any size for face

identification or face verification. Our proposed Local Fea-

ture Enhancement Network (LFENet) mainly considers the

face verification task which needs to compare the similarity

of representations from two face sets and determine whether

these two sets come from the same person (with the same

set label y).

As shown in Fig.2, the network consists of three parts: 1)

feature extraction, which extracts feature with local semantic

information of each image in a batch/set by a Convolutional

Neural Network (CNN), 2) local information transfer (LIT),

which is the key module in the LFENet. The LIT module first

builds the correlation among local features from different im-

ages in the set through relational function. Then the distilled

local information from each local region is transferred to the

related local features, and 3) feature compression, which will

compress the high dimensional feature representation into a

compact vector. Note that the average pooling across the set

is not applied during the training stage.

B. Feature Extraction

Any existing CNN can be used as the backbone network in

our framework. To preserve the local semantic information of

the feature map, we truncate the networks before the global

average pooling layer.

We train the model in a mini-batch manner. b image sets

which contain Ttr images in each are randomly chosen in

a batch, thus each batch contains B images (B = b × Ttr).

For each image, the output of the last convolution layer is

an h× w × d tensor with spatial height h, spatial width w,

channel d. Before feeding a mini-batch of image features to

the LIT module, they will be split into b four-dimensional

feature blocks F ∈ R
Ttr×h×w×d, each block for one set.

During testing, the input image sets can be of any size.

Since set size can be quite large, we set a threshold θ to speed

up calculation. The set whose size exceeds the threshold will

be split into K segments, where K = ⌈T/θ⌉, the size of

each segment is θ, except that the size of the last segment is

T − (K − 1)θ. Note that the feature blocks of each segment

are fed to the LIT module in turn.

C. Local Information Transfer

Because of the huge appearance changes within the im-

age set, the extracted features of the image set contain

overwhelmed local information. To effectively integrate all

discriminative information within the set, we propose a plug-

and-play module called the LIT module which can lead

the model to find the related local feature with similar

semantic information from different images and transfer this

information across the whole set.

Specifically, we first utilize relational learning to obtain

the similarity between local features and then use the self-

attention mechanism to transfer the local information across

the related regions. As shown in Fig.3, there are altogether

N = T × h × w local features in the block. For each

local feature l with the dimensionality d, we regard it as the

query and use Q(l;WQ) to distill the queried local feature

q. Besides, a pair of functions K(l,WK) and V (l;WV ) are

used to separately extract the key k and the value v of all

local regions in the feature block, where the key is used

to calculate the relevance with query region and the value

is the distilled information. WQ,WK ,WV are all learnable

parameters. The relevance of any two local regions α and

β across the whole set is reflected by the attention map

A ∈ R
N×N , which is computed by performing the relational

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on January 13,2022 at 06:28:43 UTC from IEEE Xplore.  Restrictions apply. 



𝑄
𝐾

𝐾
𝑉

𝑉

𝑞
𝑘𝛽
𝑣𝛽
𝑘𝛾
𝑣𝛾

Attention Map

w
𝑇

×
Feature

Block

Information Transfer

𝛼

𝛾
𝛽 𝛾𝛽

ℎ

Fig. 3: Our proposed local information transfer module.

Each layer of the feature block represents the image feature

extracted by the backbone network. Given a query local

region α, we compute its corresponding attention map to find

the related local regions: β and γ, etc. Then the distilled

information v from these parts will be transferred to the

query region.

function G(.) on their local features:

Aαβ = G(Q(lα),K(lβ)). (1)

The attention score in A represents the relevance between

the local features, only the most related features have the

high attention score.

Inspired by previous relational learning works [32], [21],

[35], we design three kinds of relational functions as follows

to verify that LIT module is not sensitive to these choices:

SoftmaxA: directly multiplying the original local feature of

two regions and normalizing the result with softmax function,

G(lα, lβ) = softmax(lTα lβ). (2)

SoftmaxB: multiplying the distilled local features (extracted

by Q(l), K(l)) of two regions,

G(q, k) = softmax(qT k). (3)

Scaled Dot: multiplying the distilled local feature and scaling

the result by dividing the number of regions,

G(q, k) =
1

N
(qT k). (4)

Then the distilled related information is superposed to the

original local feature using the residual mechanism,

l′α = lα +

N∑

β=1

AαβV (lβ). (5)

Hence, each local feature is enhanced with the information

from the strongly related regions and those irrelevant noise

information will not participate in the process of information

transfer.

In this way, we can establish the correlation of each

local feature across the image set, and let the distilled local

information complement each other through information

transfer. Specifically, the local features with valuable local

information will replenish the ones who suffer from the loss

of key information; The local features of congruent compo-

nents from faces with different poses will be aligned through

sharing their local information. Thus each local feature will

be enhanced, which will further boost the discriminability

of the image representation. Besides, the face representation

within the set will become compact at the same time. Finally,

we feed the refined feature block F ′ ∈ R
T×d×h×w into the

feature compression module.

D. Feature Compression

The dimensionality of the set feature block is relatively

high, which is not conducive to the subsequent calculation

and storage. Therefore, we compress the feature block to

obtain a more compact representation. Spatial dimensionality

reduction of each image is performed to get the face embed-

ding f ′ ∈ R
d via BN [11]-Dropout [27]-FC-BN following

the previous work [4]. Besides, since the local features in

the set have been already aligned in the LIT module, we

simply use the average pooling on each face embedding to

get the compact vector Fs = 1

Tte

∑Tte

i=1
f ′

i as the set-level

representation for testing.

What’s more, most set-based learning methods [40], [18],

[38], [16] directly supervise the set-level embedding in

the feature space during the training phase. This unduly

relaxed constraint can not force the model to learn robust

feature representation for each image in the set, as shown

in Fig.1(a). Furthermore, to ensure that the LIT module can

transfer valuable local information of faces to improve the

discriminability of each sample within the set, we calculate

the classification loss on all face embeddings rather than

at the set level. In this way, the model can learn intra-set-

compact face representations at the same time.

IV. EXPERIMENTS

In this section, we will evaluate the performance of the

proposed LFENet on set-based face recognition task. We

first introduce the datasets and evaluation protocols, and

then the implementation details are presented. Next, we

compare LFENet with the state-of-the-art methods on several

mainstream set-based face recognition benchmarks. Finally,

we explore the effectiveness of the LIT module through the

ablation experiments.

A. Datasets and Evaluation Protocols

Following the previous works [17], [16], [43], we employ

the still image dataset—VGGFace2 [2] as the training data.

It contains 3.3M images of 8,631 subjects with rich face vari-

ations within the same subject. To let the model learn from

set-based data, we divide the images that belong to the same

subject into multiple unordered image sets. Each set includes

Ttr randomly selected images. Note that requirement of the

model’s ability to establish correlation is higher when Ttr

becomes larger.

As for the test dataset, we use mainstream set-based face

recognition evaluation datasets: IARPA Janus Benchmark A

[12] (IJB-A) and IARPA Janus Benchmark C [20] (IJB-C).

Both of them collect images captured under unconstrained

environments which show large variations in image quality

(e.g. low-resolution and motion-blur) and subject state (e.g.

pose, expression, accessories).

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on January 13,2022 at 06:28:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Evaluation of the 1:1 verification protocol on IJB-A dataset (higher is better).

Method Backbone Training Data
1:1 Verification TAR

FAR=1e-3(%) FAR=1e-2(%) FAR=1e-1(%)

NAN [40] GoogleNet Crawled(3M) 88.10±1.10 94.10±0.80 97.80±0.30

QAN [18] GoogleNet Ext. VGGFace2(5M) 89.31±3.92 94.20±1.53 98.02±0.55

DAC [17] GoogleNet Crawled(3M) - 95.40±0.10 98.10±0.80

Multicolumn [39] ResNet-50 VGGFace2(3.3M) 92.00±1.30 96.20±0.50 98.90±0.20

GhostVLAD [45] SENet-50 VGGFace2(3.3M) 93.05±1.60 97.20±0.50 99.00±0.20

C-FAN [6] Face-ResNet MS1M(10M) 91.59±0.99 93.97±0.78 -

PIFR [16] ResNet-50 VGGFace2(3.3M) 95.50±1.00 98.30±0.40 99.30±0.30

PFE [26] 64CNN Web.+MS1M(4.4M) 95.25±0.89 97.50±0.43 -

Baseline(Avg.) ResNet-34 VGGFace2(3.3M) 80.68±4.27 92.91±1.40 96.76±0.02

LFENet(Ours) ResNet-34 VGGFace2(3.3M) 87.68±3.44 95.25±1.09 98.40±0.42

Baseline(Avg.) SENet-50 VGGFace2(3.3M) 93.62±0.84 95.32±0.76 97.45±0.44

LFENet(Ours) SENet-50 VGGFace2(3.3M) 96.83±0.65 98.93±0.39 99.57±0.15

IJB-A dataset proposes the concept of ‘template match-

ing’. Each template is composed of a mixture of still images

and video frames from the same subject. We regard the tem-

plate as an unordered image set. The entire dataset contains

5,712 still images and 20,414 video frames of 500 subjects.

The benchmark provides two protocols: 1:1 face verification

and 1:N face identification, which are all template-based.

We only focus on the former protocol where 10-fold testing

is conducted. Unlike the traditional closed-set classification

problem, face verification is an open-world task, where

face representations of high discriminability are required.

We report the true acceptance rate (TAR) at different false

acceptance rates (FARs). IJB-C dataset extends the IJB-A to

21,294 images and 11,779 videos of 3,531 subjects, which

brings more challenges to the face recognition model.

B. Implementation Details

Pre-processing: Before feeding the images to the network,

we first detect and align faces by applying the MTCNN

algorithm [42] in both training and testing datasets. For the

robustness of the model, the bounding box is extended by a

factor of 0.3. We follow the recent works [4], [43] to generate

the normalized face crops with the size of 112 × 112, and

faces are randomly horizontal flipped with the probability of

0.5 during training.

Training: All experiments in this paper are implemented

by PyTorch [22] and are conducted on four GeForce GTX

Titan X GPUs. We use ResNet-34 [9] and SENet-50 [10]

respectively in this paper as the backbone network. To train

LFENet based on ResNet-34, we first train the original

network on the VGGFace2 dataset from scratch and then

finetune the LFENet with the learning rate of 0.001 on

the backbone, 0.05 on the LIT module. The learning rate

is divided by 10 every 3 epochs. As for SENet-50, we

directly use the pre-trained model provided by [4], which

has been trained on the cleaned MS1M dataset [7], and then

finetune on our LFENet, as this can considerably accelerate

the training. During the finetuning, we set the learning

rate to start from 1e − 4 on the backbone network, 0.01

on the LIT module and divided by 10 every epoch. For

both backbones, we set the momentum to 0.9 and weight

decay to 5e − 4. What’s more, to let the LIT module

learn from data composed of several complete image sets

in batches at the training stage, the batch size B should be

an integral multiple of the image set size. Different image

set sizes are selected to train the ability of the LIT module

to extract the correlation of the local features across the

set in the data preparation stage. Besides, we simply use

the softmax function to compute cross-entropy loss for all

samples within the set to force the model to learn intra-

set-compact face representations. Thus the training process

becomes equivalent to training on the single sample in a

mini-batch manner.

Testing: In the test phase, the LFENet is applied to the

testing datasets without finetuning. The images in each set

will be sent to the network to calculate the corresponding

face embeddings. To achieve efficient computing, we set

the set size threshold θ to 12, as mentioned in Sec.III-

B. The larger image sets will contain too much redundant

information, so it is not necessary to transfer all such

information across the set.

C. Comparison with State-of-the-art Methods

Our proposed LFENet based on two backbones—ResNet-

34 and SENet-50 is used to evaluate the performance on

IJB-A and IJB-C datasets. To verify the effectiveness of

the LIT module, we compare the LFENet with baseline

methods, which use the original backbone network structures

to calculate the representations of each image and simply

apply the average pooling (Avg.) on them to get the set-

level feature. The experiment results show that LFENet

outperforms the baseline by a large margin and is superior

to other state-of-the-art methods no matter with the same or

more powerful backbones.

Experiments on IJB-A. We compare LFENet with the

existing state-of-the-art methods aiming to solve the set-

based face recognition task, where the video face recognition

methods are also included because they consider video clips

as unordered image sets as well. As shown in the Tab.I,

our method gains about 2∼7% performance improvement
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TABLE II: Evaluation of the 1:1 verification protocol on the IJB-C dataset (higher is better). The methods in the first four

rows focus on static face recognition, and the set-level feature is obtained by naive average/max pooling. The other methods

are proposed for set-based face recognition.

Method Backbone Training Data
1:1 Verification TAR

FAR=1e-5(%) FAR=1e-4(%) FAR=1e-3(%) FAR=1e-2(%)

VGGFace2 [2] SENet-50 VGGFace2(3.3M) 73.40 82.50 90.00 95.00

VGGFace2 [2] SENet-50 VGGFace2(3.3M) 74.70 84.00 91.00 96.00

Yin et al. [41] ResNet-50 MS1M(10M) - - 93.20 95.80

Zhao et el. [44] Light CNN-29 - 82.60 89.50 93.50 96.20

Multicolumn [39] ResNet-50 VGGFace2(3.3M) 77.10 86.20 92.70 -

DCN [38] ResNet-50 VGGFace2(3.3M) - 88.00 94.40 98.10

DCN [38] SENet-50 VGGFace2(3.3M) - 88.50 94.70 98.30

PFE [26] 64CNN Web.+MS1M(4.4M) 89.64 93.25 95.49 97.17

LFENet(Ours) SENet-50 VGGFace2(3.3M) 88.39 93.63 96.69 98.28

(a) Comparison with SOTA methods (b) Comparison about relational functions (c) Comparison about different set sizes

Fig. 4: Average ROC curves on the IJB-A dataset over 10 splits. (a) Comparison among our proposed LFENet (solid line),

baselines and other methods (dotted line); (b) Comparison among LFENet trained with different relational functions; (c)

Comparison among LFENet trained with different set sizes.

compared with the corresponding baseline, which indicates

that our proposed LIT module can make full use of the rich

local information for set modeling. Although we only use

the naive average pooling to compute the set representation

without representative sample selection, the local information

is transferred across the set to complement each other to

promote each local feature. In addition, our method can

achieve better performance under the same scale backbone

network and training data, and the performance of LFENet

on SENet-50 is better than the method [26] trained with

large-scale 64CNN.

In Fig.4(a), the receiver operating characteristics (ROC)

curve is visualized for a more clear comparison. Note that

the ROC curves of other methods are drawn by connecting

discrete points from the reported TAR@FAR. The larger area

under the curve (AUC) illustrates that the our method can

learn better face representation robust to drastic appearance

changes, owing to local feature enhancement especially sam-

ples suffering from the loss of local information.

Experiments on IJB-C. To further verify the robustness of

our model, we do experiments on the more challenging IJB-

C dataset. Here we compare the performance of our LFENet

with the latest static face recognition methods and set-based

face recognition methods. Note that we use SENet-50 as our

backbone. It can be seen from Tab. II that LFENet can still

outperform all the other methods.

D. Ablation Study

Here we evaluate various design choices of our LFENet

and compare it with the baseline on the IJB-A dataset to

comprehensively verify the effectiveness of the LIT module.

Note that the models are trained based on the SENet-50.

Attention Map Computing. Firstly, we use three different

relational functions which are introduced in III-C to calcu-

late the attention map and train the corresponding model

respectively. Experiment results in Tab.III and Fig.4(b) show

that the three different functions can all achieve the purpose

of building the correlation between the local features. The

SoftmaxB function is the calculation method we used in the

main experiment, which performs better than other ways.

Besides, compared with the SoftmaxB which distills the local

feature through the functions Q(.) and V (.), the SoftmaxA

function directly computes the similarities between the local

features, therefore the performance is not as good as the

former.

Size of the Image Set. We further evaluate the influence

of choosing different image set sizes on training the model

to capture local feature correlation. We separately select 3,

5, and 7 images and a single image to make up the image

sets. It is noticed that when one image is selected, the LIT
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𝐴1𝐾1𝑄𝑢𝑒𝑟𝑦 𝐴2𝐾2 𝐴3𝐾3 𝐴4𝐾4

Fig. 5: Visualization results of attention maps on IJB-C dataset. The first column is the query image. We select some

representative areas as the query region (bounded with red box). The next few columns represent the ‘key’ image and its

corresponding attention map. Best viewed in color.

TABLE III: Evaluation of our proposed LFENet under differ-

ent settings (relational functions for computing the attention

map / set size chosen for training the model). TAR@FARs

are reported under 1:1 verification protocol on IJB-A dataset.

Method
1:1 Verification TAR

FAR=1e-3 FAR=1e-2 FAR=1e-1

SENet-50 93.62±0.84 95.32±0.76 97.45±0.44

LFENet(SoftmaxA/size-3) 86.58±3.25 95.56±1.05 98.97±0.28

LFENet(Scaled Dot/size-3) 90.42±1.78 97.11±0.50 99.10±0.30

LFENet(SoftmaxB/size-3) 96.83±0.65 98.93±0.39 99.57±0.15

LFENet(SoftmaxB/size-1) 90.31±1.87 95.16±0.84 98.00±0.40

LFENet(SoftmaxB/size-5) 95.58±0.90 98.42±0.40 99.53±0.17

LFENet(SoftmaxB/size-7) 94.91±1.63 98.25±0.57 99.42±0.27

module is equivalent to aggregate the relevant local features

within a single image. We do experiments on IJB-A and the

results are shown in the Tab.III. The ROC curves are drawn

in Fig.4(c).

According to the results, when the set size is 3, the model

achieves the best performance. In addition, the model trained

with image sets composed of multiple images performs

better than that trained with a single image. It indicates that

compared with only integrating spatial semantic information

within the same image, the aggregation of relevant local

information from multiple images is more helpful to improve

the discriminability of the local feature.

Attention Map Visualization. In order to explore the ability

of the LIT module on capturing the correlation among the

local features, we visualize the attention maps on some

samples from the IJB-C dataset. The visualization result is

shown in Fig.5. The first column shows the query image, in

which we select some representative local areas as the query

regions. The following columns show the ‘key’ images and

their corresponding visualized attention maps that are resized

to the same size as the input image. Note that the response

value is normalized by the sum of all response values of the

attention map. The higher the response value, the stronger the

correlation with the query area. It can be seen that LFENet

can effectively find the same local region of the faces under

different conditions. In addition, for queries with low quality

(e.g. occlusion in the second example), the LIT module can

still find their congruent regions from other images in the set.

Thus the key information from these regions can transfer to

the query regions to enhance its discriminability.

V. CONCLUSIONS

To address the problem of face recognition based on the

image set, we propose an advanced method called Local

Feature Enhancement Network (LFENet). Specifically, we

enhance the local feature of each image within the set

by transferring the local information for two reasons: 1)

The local features with serious information loss can obtain

the key face information from the others; 2) The various

local information can be aligned in multiple faces under

different conditions. The extensive experiments reflect that

our LFENet can learn robust face representation through

deeply exploiting the rich information within the image set.
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